on topological transitive maps on operator algebras

نویسندگان

h. rezaei

university of yasouj

چکیده

we consider the transitive linear maps on the operator algebra $b(x)$for a separable banach space $x$. we show if a bounded linear map is norm transitive on $b(x)$,then it must be hypercyclic with strong operator topology. also we provide a sot-transitivelinear map without being hypercyclic in the strong operator topology.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On topological transitive maps on operator algebras

We consider the transitive linear maps on the operator algebra $B(X)$for a separable Banach space $X$. We show if a bounded linear map is norm transitive on $B(X)$,then it must be hypercyclic with strong operator topology. Also we provide a SOT-transitivelinear map without being hypercyclic in the strong operator topology.

متن کامل

Jordan Maps on Standard Operator Algebras

Jordan isomorphisms of rings are defined by two equations. The first one is the equation of additivity while the second one concerns multiplicativity with respect to the so-called Jordan product. In this paper we present results showing that on standard operator algebras over spaces with dimension at least 2, the bijective solutions of that second equation are automatically additive.

متن کامل

Irreducible Positive Linear Maps on Operator Algebras

Motivated by the classical results of G. Frobenius and O. Perron on the spectral theory of square matrices with nonnegative real entries, D. Evans and R. Høegh-Krohn have studied the spectra of positive linear maps on general (noncommutative) matrix algebras. The notion of irreducibility for positive maps is required for the Frobenius theory of positive maps. In the present article, irreducible...

متن کامل

ON TOPOLOGICAL EQ-ALGEBRAS

In this paper, by using a special family of filters $mathcal{F}$ on an EQ-algebra $E$, we construct a topology $mathcal{T}_{mathcal{mathcal{F}}}$ on $E$ and show that $(E,mathcal{T}_{mathcal{F}})$ is a topological EQ-algebra. First of all, we give some properties of topological EQ-algebras and investigate the interaction of topological EQ-algebras and quotient topological EQ-algebras. Then we o...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

جلد ۳۸، شماره ۱، صفحات ۱۲۳-۱۳۰

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023